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Wave forces on a submerged vertical plate 
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S U M M A R Y  
A vertical plate of finite length and depth is attacked by gravity waves in water of finite depth. The forces and moments 
acting on the plate are computed by using the theory of linearized waves. The forces depend on three dimensionless 
parameters combining the draft, length, water depth and wave length and on the angle of attack. The problem is 
reduced to the solution of two infinite linear systems of equations. Numerical solutions are presented for different 
particular combinations of the parameter values. In most of the cases the standing wave approximation yields sufficient- 
ly accurate results. 

1. Introduction 

Gravity waves acting on ships and other floating bodies induce forces and moments which set 
them in motion. Computing the magnitude of the forces is a necessary step in order to determine 
the body motion as well the structure strength. In the usual engineering approach (Blagovesh- 
chensky [2]) the forces are computed with neglect of scattering, and other additional simplifying 
assumptions are used. More advanced solutions are based on a slender-body approximation 
(Newman, [9] ). 

In the present work we compute the forces induced by a monochromatic wave approaching 
from infinity and impinging upon a rectangular vertical plate in water of finite depth. No 
approximations are involved excepting the usual tinearization of the surface condition. 
Although the plate is a body of a highly schematized shape, the information obtained in this 
case is valuable for validating different approximate engineering approaches. 

The present study is an extension of the similar, but much simpler, solutions obtained for 
cylinders of circular cross-section (Black, Mei and Bray [1] and Garrett [4] ). The essence of the 
method, like in the simpler case, is the using of elliptical coordinates r, 0, z (Fig. 1) such that the 
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Figure 1. The elliptical cylinder : (a) view, (b) cross-section. 
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236 M. Stiassnie, G. Dagan 

body plane contour becomes r = R = const. We start with the more general problem of a vertical 
elliptical cylinder, which degenerates into a plate as the ratio of lengths of the axis tends to zero. 

2. Formulat ion  of  the mathematical  problem 

2.1. General equations 

Elliptical coordinates (Fig. 1) are related to cartesian coordinates as follows 

x = ( / / 2 )  c o s h r c o s 0 ,  (0__<r< m ,  0__<0<2n)  (la) 

y = (l/2) sinh r sin 0 (lb) 

z = z ,  (lc) 

These are used in the sequel. 
Under the assumption of linearized irrotational gravity waves, the velocity potential 

(x, y, z, t )=  q~(x, y, z)e- '~  (2) 

satisfies Laplace equation in the flow domain 

V ~ 4' = 0 (3) 

and the flee-surface equation 

0) 2 
4),~ - ~ -  4) = 0 (r > R, z = 0) (4) 

0) being the frequency. 
The boundary condition at the bot tom is 

4),z = 0 (z = - h) (5) 

while on the body surface we have 

4),, = 0 (r = R, - H  < z < 0) (6a) 

4),z = 0 (r < R, z = - H ) .  (6b) 

As usual the potential is represented as the sum 

4) = 4)i + 4)s (7) 

of the potentials of the incident and the scattered waves, respectively. The solution is rendered 
unique by imposing upon 4)s the radiation condition. 

4)i has the following expression 

~,_ ga A(z)  . 
0) fs(0 ) e 'kip (Sa) 

where 

p = x cos f l+y sin fl (8b) 

f~ (z) = 2 ~ cosh [k s (z + h)] / [h + (9/0) 2) sinh: (k s h)]~ (8c) 

and a and k s are the amplitude and the wave number of the incident wave, respectively. 
According to McLachlan [5] q~ may be expressed in terms of elliptical coordinates as follows 

4)'- 2ga A(z) ~ (Ce2,.(r,'qs) ce2,.(fl, qs) Ce2m(O, qs)/P2,,,(qx)+ 
0) fs (0) m=0 

+ Se2m+ 2(r, qs) Sezm+ 2 (fl, qs) se2,,+ 2 (0, q~)/ s2,,+ 2(q,) + 

+ i[Ce2m+ S (r, qs) Ce2m§ s (fl, qs) ee2,.+ , (0, q~)/P2,,+ s (q~)+ 

+Sezm+s(r, qs)sezm+l(fl, ql)se2~+s(O,q,)/s2~+l(q;)]} (9) 
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where ql=(lkll)  2, l is the body length (Fig. 1) and Se, Ce, se and ce are Mathieu functions 
(Appendix 1). 

2.1. Thin body expansion 

Rather than pursue the general problem of the elliptical cylinder, we consider the case of a thin 
body and expand q5 as follows 

w h e r e  R = o ( 1 )  a n d  61 = o (1 ) .  
Substituting r from (10)into (3), (4), (5), and (6) and expanding for r =  R, we find that qS}~ 

satisfies the following equations 

V2r  0 ( -h<_  z <_ 0) (11a) 

s 2 ~ (r 0, z : 0 )  ( l lb)  = 0 > 

= 0 (z  = - h) (1 l c )  

qS~, r = - q~I,r (r = 0, - H  < z < 0) ( l ld)  

It is readily seen that by linearization the body boundary conditions are transferred from 
r = R to r = 0 and r is the potential of the waves scattered by a vertical plate. 

r  satisfies the same equations as r expecting (1 ld) which becomes 

s = - r 1 6 2  ( r = 0 ,  - H <  z <  0) (12) ( b l , r  I s 

while 6 a (R) = R. 

3. The solution of qS~ 

Following the usual procedure of separation of variables ~b~ is expressed as 

~b~ = Z (z) O / (0) R (r) (13) 

Eqs. (11a), (13) yield for Z, O, R (Moon and Spencer, [6]) 

Z " -  (16~/12)Z = 0 (14a) 

O " +  (6m- 2e cos 20) O = 0 (14b) 

R " - ( 6 , , - 2 e  cosh 2r)R = 0 (14c) 

where 6,, are eigenvalues (Appendix 1). The general solution of q)~, satisfying (l la,  b, c) and the 
radiation condition, is given by 

r = ~ {b~f~(z)Me~)(r, q~)ce,.(O, ql)+ 
m = O  

+ ~ b*.f.(z)Fek,.(r, -q.)cem(O, -q . )}  + 
n = 2  

+ ~ {bmlfl(z)Ne~)( r, ql)sem( O, ql )+  
m = l  

+ 2 b,~.f.(z)Gekm(r,-q.)sem(O,-q.)} (15) 
n = 2  

where b*., b~. are unknown coefficients and Me (~), Ne m, Fek Gek, ce se, are Mathieu functions 
(Appendix 1). The function fl  (z) is given by (8c), while f.(z) (n = 2, 3 . . . .  ) are normalized eigen- 
functions 

f,  (z) = 2 ~ cos [ (4q~/1)(z + h)] / [ h -  (g/co z) sin 2 (4q~ h/l)]~ (16) 
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with qn (n = 1, 2, 3, ...) satisfying the following transcendental equations 

(4q~/l) th [4q~/l)h] = co2/9 (17a) 

(4q~/l)tg [4q~,/l)h] = -0)2/9, (n = 2, 3, ...) (17b) 

The unknown coefficients in (15) have to be determined with the aid of ( l ld)  and from the 
requirement of continuity beneath the plate 

~b~o(r,O,z)=O~o(r, -O,z) ( r=0 ,  - h <  z <  - H )  (18a) 
s ~ s r qSo,,(r, 0, z) -q~o,r(, - 0 ,  z). (r=0,  - h < z <  - H )  (lSb) 

Since most of the wave energy is concentrated in the vicinity of the free surface, it is con- 
venient to represent ~b~ as 

~b~ = ~+q5 (19) 

where ~ is the potential of the waves scattered by a plate penetrating through the whole water 
depth. Hence ~ satisfies the following body condition. 

qS,. = - ~b'.. (r = 0, - h < z < 0) (20) 

A similar problem has been solved by Morse and Rubinstein [7] in the case of scattering of 
electromagnetic waves. Using their solution it is easy to ascertain that q5 has the following 
expression 

q5 = f , ( z )  ~ b,,1Ne~)(r, q,)sem(O, q,) (21) 
m = l  

where b,,, are known coefficients given in Appendix 1. The potential q~ satisfies at r = 0 the 
following boundary conditions [see (20)] : 

~,r(o, 0, z )=  -4,r(0,  - 0 ,  z) 
~,r(0, 0, z) = 0 

q~ (0, 0, z ) -  ~ (o, - 0, z ) :  ~(o, - 0, z ) -  ~(0, 0, z). 

( -  h < z < - H) (22a) 

( - H  < z < 0) (22b) 

( - h  < z < - H )  (22c) 

q; may be regarded as the potential of the flow generated by a wavemaker beneath the plate 
which cancels the velocity potential discontinuity associated with ~. The velocity distribution 
at the "wavemaker" is selected as an unknown function represented by the following double 
series 

~,,= ~ ~ U~ys(z)sintO ( r = 0 , - h < z <  -H)  (23a) 
t = l  s = l  

q],, = 0. (r = 0, - H  < z < 0) (23b) 

By retaining in (23a) only odd functions of 0, Eq. (22a) is satisfied identically. The orthonormal 
set F, (z) is given by 

F1 (z) = ( h -  H) -~ (24a) 
F,(z) = [2~(h-H)] ~ cos [ ( n -  1)rc(h+z)/(h-H)], (n = 2, 3 . . . .  ) (24b) 

so that (11c) is satisfied. The constants Uts are unknown coefficients to be determined with the 
aid of (22e). The potential q; may be represented again in the whole flow domain by a series 
similar to that of (15), retaining only odd functions of 0, as follows : 

(a = 2 {~,.lfl(z)Ne~)( r, q,)sere(O, ql )+  
m = l  

+ ~ b~nf,(z)Gekm(r,-qn)se,,(O,--qn)}. (25) 
n = 2  

The following relationships between bran in (25) and the "wavemaker" coefficients Uts in (23a) 
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Wave forces on a submerged vertical plate 239 

are found by differentiating ~ (25), setting r = 0  and identifying with q~,, in (23a, b)" 

1 ~ ~ ,  2 m + l  
/~(2.~+m = ~.~2~+aroc1)" i(0, ql) ,=o ~=, U(2,+I)sPI~B2t+I (ql) (26a) 

/~(2m+2)1-= N"O)'~2,,+2t",tn ql) ,=0 s=* U(2t+2),P1,B2,+2 (qa) (26b) 

1 ~ ~ U(2t+l)sPns(-1)m+tA2r~+ll(qn) (26c) 
g(2,.+1). = aekim+l(0, - q . )  t = 0  s = l  

1 ~ ~ U(2~+e)sPn~(-l)m+tB22~'++?(qn) (26d) 
/~(2,,+2), = aeklm+2(O,-q,) ,=o s = l  

where P,, (n= 1, 2,... ; s= 1, 2 .... ), BT(q)AT(q) are known coefficients defined in Appendix 1. 
The only unknown coefficients U,, satisfy the equations derived from (22c) by using the eigen- 

functions of q~,r from (23a) 

2 5" dOsinzO dzFe,(z){[~a(O,O,z)+O(O,O,z)]-[~)(O, -O,z)+(o(O, -0 ,  z)]} = 0  
- h  

( z = l ,  2 .. . .  ; 0 = 1 , 2  . . . .  ) (27) 

Substituting (~ from (21) and (} from (25)in (27) and using (26), we finally obtain after some 
algebraic manipulations the following infinite systems of linear equations for Ut~: 

~, ~ ,r n,2,+ 1)0 _ g,2~+ 1,r (z = 0, 1, �9 ~b = 1, 2, .) (28a) 
~ ( 2 t +  1 ) s "V(2 t+  1)s - -  ~ , " "  ' "" 

t=O  s = l  

~ rr n(2~+2)0 ~(2~+2,0, (z = 0, 1, �9 @ = 1, 2, .) (28b) 
~ ( 2 t +  2 ) s ~ . ( 2 t +  2 ) s  - ~  . . .  , . .  

t = 0  s = l  

where the coefficients D~s ~ and D ~0, which are expressed in terms of known quantities, are given 
in Appendix 1. 

Concluding, the original problem for ~b~ has been reduced to the solution of the infinite 
systems of Eqs. (28). 

Once these systems are solved, U~ are substituted in (26) to obtain ~ which added to q5 (21) 
yields q~. The systems (28) have been solved numerically by taking only a finite number of 
terms. Unfortunately the convergence of the partial solution towards the exact one could not be 
proved rigorously because of the complex structure of the coefficients of (28). Instead the 
number of equations has been gradually increased until the values of U,s, as well as those of the 
forces, became practically constant. Since this constancy was reached quite rapidly by using a 
relatively small number of terms, it was concluded that the system is well behaved, at least in 
the range of values of parameters considered here. This conclusion has been strengthened by 
the good agreement between the present computations and other known solutions for some 
particular cases (see Section 6). 

The numerical procedure and the practical convergence test are discussed in some detail 
in Appendix 2. 

It is worthwhile to point out that the splitting of ~b~ in the two components ~ and ~ and the 
representation of q] in terms of the wavemakers coefficients U= improve significantly the 
convergence of the solution of the resulting infinite systems. 

4. Forces acting on the elliptical cylinder 

The linearized pressure P acting on the surface of the body is given by 

icw 
P -- -TZ + e -io' l-~b'(0, 0, z)+ ~b~(0, 0, z)+O(R)] 

g 

where y is the specific weight of the fluid. 
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The expressions for the various forces and moments are found by integrating the pressure on 
the body surface 

, 
F~ = ~ sinh R dz dO P (R, O, z) cos 0 = 

- H  0 

f o } - 29 { R dzdO(ol(o, O, z) cos O+O(R 2) , (29a) 
- H  0 

vr  = cosh R dzdO P(R, O, z) sin 0 = 
- 0 

t "'1 e I i~ot o 2re 

29 { f -n  fo dzdO~~ 0, z)sin O+O(R) }, (29b) 

F~ = -~ 12 f Ro . 2~ dr dO P (r, O, - H) sin 2 0 = rcyH l2 8sinh 2R + 

ie)Tl2 e-i~ { R f i~ dOd?'(O, O, - H) sin2 0 + O(R2) } , (29c) 
+ 49 

1 ;o ;2~ 12 fR f2,~ M:;= ~coshR)_~Jo dzdOP(R,O,z)zsinO + ~ Jo o drdOP(r'O'-H)ysin20= 

-2c~ { - 2 9  f ~ j.2~o dzdOdp~~ O, z)z sin O+O(R)}, (29d) 

M,;= ~ s i n h R  ~ dzdOP(R,O,z)zcosO-T f ~ drdOP(r,O,-n)xsinZO = 

ioo?,e-,,ot fo [2~ 
-- 2g {R [ i-_uoo dzdOdp'(O'O'z)zc~ 

f  do 'Io, o,-mcosOsin o] + o / R  , (29e) 
4 o 

l z f ~ j2'~dzdOP(R,O,z)sin20= 
M ; = ~  -n o 

io)~ e - iwt o 2 

- 2# {I_H f0 dzdOdp~o(O, O, Z)sin 20+O(R)}. (291) 

In deriving (29a)-(29f) advantage was taken of the fact that ~b I(0, 0, z) in (9) and q~ (0, 0, z) in 
(15) are even and odd functions of 0, respectively. 

Eqs. (29a, 29c, 29e) show that the first approximations ofF~, F~, My of order R result from the 
integration of the pressure induced by the incident wave solely over the body surface. The 
simple computation of these components is not pursued here. 

The other three forces, the lateral ones, F~, M~, M~' in (29b, 29d, 290 depend in the first order 
only on the scattered wave and are determined by the pressure distribution on the equivalent 
plate. 

Writing down the complete solution of qS~ as 

q5~o = (o+~ = b,,lfl(z)Ne~)( r, ql)sem( O. ql)+ 
r d  

+ ~ b,..f,(z)Gekm(r,-q,)sem(O,-ql) } (30) 
n = 2  

Journal o f  Emdineerin 9 Math.,  Vol.  7 (1973) 2 3 5 - 2 4 7  



Wave forces on a submerged vertical plate 241 

where b,.. = bmn "~- bmn are known constants, we obtain by integrating in (29) 

[ F y l -  I F ; I  nco ~ IbmlL1Ne~)(O, ql)B.~(ql)+ 
7aIH 2agH m= 1,3,5 t 

b,..L. Gekm(O, - q . ) ( -  1) ( ' -  i)/2 ar(q.) I '  + 
n = 2 , 3 , . .  ) 

(31a) 

[M;I 
2ag H2 ~= ~,3,5 { bmiK1Ne~)(O' ql) B~(ql)+ 

+ ~ b~.K.Gek~(O,-q.)(-1)(~-i ' /2A"~(q.)},  
n=2,3... 

(31b) 

IMzl _ IMzl _ no) ~ b,.1L1Ne~)(O ' ql)B,~(qa) + 
Tal 2 H 8agH m = 2 ,4 ,6  ( 

+ ~ bm.L.Gek.(O,q.)(-1)(m-zl/zB"J(q.)}, (31c) 
n = 2 , 3 . . .  

where fo 
L. = f .  (z) dz and K.  = zf.(z) dz. 

-H H 

Again, the values of the forces depend ultimately on the coefficients Uts in (28). 

5. T h e  smal l  wave  length l imit  (geometr i ca l  opt ics )  

It turns out (Section 6) that an useful approximation for the forces is obtained at the limit of 
small wave length A as compared to H and I. At this limit the incident wave is just reflected by 
the plate. Hence ~b has the following expressions 

qS=0 if y c o t f i - l / 2 < x < y c o t f i + l / 2 ,  y > 0 ;  (32a) 

d? - ag fl  ( z )  e - i o ,  t [ e i k  l ~ . . . .  t~ +ysin fl) ~_ eik l ( . . . .  ~ -  y sin fl)] (32b) 
A (0) 

i f - y c o t f i - I / 2 <  x<  yco t f l+I /2 ,  y < O ;  

q~ = 491 _ ag f i (z) e-i~,t eik, ~x ~o~ ~ + ,sin/~) elsewhere. (32c) 
A (0) 

r of (32b) represents a standing wave in front of the plate�9 The forces acting on the plate, 
originating from the standing waves at the upstream face, are found by using (29) as follows" 

2 I sin [ (l/2) n cos fi l l .  sinh [ (h/2) 2rc] - sinh [ (h/2-  H/2) 2n] (33a) 
IFrl = (l/2) zc cos fi (a /2)  2n cosh [(h/2)2n] ' 

21sin [n cos fl (l/i)][ ~(2nh/,~) sinh (2rch/).)- cosh (2rth/,~) 
IMxl -- (I/2)n cos fl [ 

2n (h/,~- H~ ;0 sink [2n (h/;~- H~ 2)] - cosh [-2n (h/).- H~ ~)] 
(2 n/i) 2 cosh (2 h/i) 

(2rth/2) sinh [2n (h/)~- HI)t)] -(2nh/;t) sinh (2nh/2) l ,  
(33b) 

(2rcH/,~) 2 cosh (2rch/~) 

I (l/;0n cos fl cos [(l/;t)rc cos B] - sin [( l /2)n cos fill 
IMzl = [(l /2)n cos/~]2 - -  

�9 sinh [ (h/2)2n] - sinh [ (h /2) -  H/2)2n]  (33c) 
(n/2)  2n cosh [ (h/2)2n] 
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6. Discussion of numerical results 

6.1. General 

The lateral forces and moments (31a,b,c) acting on the body depend on four dimensionless 
parameters: the draft/length ratio H/l, the depth/length ratio h/l, the incident wave length/ 
length ratio 2/1 and the angle of attack ft. 

Because of the multitude of parameters and the tedious numerical computations, the forces 
have been computed only for a few particular combinations of the parameter values. Generally, 
three of the parameters have been kept constant, and the remaining one assigned various values. 

The different stages of the numerical computations which ultimately yielded the values of 
Ut~ in (28) and of the forces, as well as a sample of the numerical convergence, are given in detail 
in Appendix 2. 

It is worthwhile mentioning that the forces (31) have been made dimensionless with respect 
to hydrostatical forces acting on a body of finite beam. The magnitude of the forces reflects, 
therefore, the role played by the dynamical wave effect. 

6.2. The influence of the wave length 

Three parameters have been kept fixed:H/l= 0,1, h/l= 0.2 and fl= 90 ~ The draft/wavelength 
ratio HI2 has been taken equal to 0.1, 0.2 and 0:5 (i.e., h/2 = 0.2, 0.4, 1 and I/2 = 1, 2, 5 respective- 
ly). These are, therefore, typical cases of waves in water of finite depth up to deep water and of 
waves of moderate to short length as compared with I. The ratio H/h = 0.5 is not particularly 
significant, since the wave energy is concentrated mostly in the upper zone of the flow domain. 

The computed values of JFy] and JMxl in (31a,b) are represented in Fig. 2. On the same figure 
we haverepresented the forces computed by Black, Mei and Bray [1] in the case of an infinite 
strip ( l~  oo), i.e. of two-dimensional flow. To adopt the latter values in the case of a finite I is 
somehow tantamount to using a "strip" theory. In addition, the forces based on the standing 
wave approximation (33 a,b) have been also represented in Fig. 2. 

O Eqs. 31 a ,31 b 

Black et al, (1971) 

iF 
yj,JMxl ~1 Standing wave approximation ~ Eqs. 33a,33bl 

| 

" 1 1.6 0 

5.2 f ' ~ ' - ~ "  

O ~ Q.2 0.3 OA 0,5 H A 

Figure 2. The influence of///2 on the lateral wave forces IFyl and IM~l for h/l=0:2, H/l=0.1 and B=90 ~ 

In most of the range investigated here, say for H/2 > 0.15, the solution is in excellent agree- 
ment with the two-dimensional solution. Consequently, the influence of the edge refraction is 
small. Moreover, the simple short wave length approximation is also very close to the present 
solution, even in the range 0.1 < H/2 < 0.15. The range H/2 < 0.1 has not been investigated 
because of the numerical difficulties. This range, however, can be handled easier with the aid of 
other approximate approaches, like those of slender body (Newman, [9]) or shallow water 
(Tuck and Taylor [11]). 

At the limit [1/2--+0 with G/h and H/l kept fixed (i.e. h/2--,O and 1/2~0) the flow degenerates 
into a streaming motion beneath a rigid wall. This case has been treated by Newman [10]. The 
forces vanish for H/2 = 0, but the short wave approximation is then no more valid. 
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Wave forces on a submerged vertical plate 243 

6.3. The influence of the angle of attack 

The influence of  the variat ion of/3 u p o n  the three lateral forces and  momen t s  has been studied 
for two sets of values of  the other  parameters :  2/I= 0.5, h/l= 0.2, H/h = 0.5 (Fig. 3) and 2/1= 1, 
h/l=0.2, H/h=0.5 (Fig. 4). The m o m e n t  Mz has been computed  for easiness with H/h= 1. In 

+ \ ....... - - E q .  23~ 
O.= 

O.t 

O.4 

O.= 

I ;,I ! Eq. 3 1 ,  
1"4 - -Eq.  33 .  

I+:Z 'I / o.a 

o.4 

* a  

o i i 

Figure 3. The influence of 13 oa the lateral wave forces IFyl and }Mxt for h/l=0.2, H/l=O.1 and 2/l=0.5 and on IM~I 
for h/l=0.2, H/l=0.2 and 2//=0.5. 

Imzl 
�9 �9 tn.=l e 

�9 _ _  ~q.$3 r 
a3 

I'q 

. ~ �9 Eq. =1 b j O.4 

0a  

Q 

I+,1' I+,1' 

�9 ~ �9 Eq. 31 + 
l a  - -  tq .  ~=* 

1.o + 
O.6 

O.4 

oa 

o I I 
i s  la 4S ~ 7S 9O ~ 

Figure 4. The influence offl on the lateral wave forces Ifrl and IMp[ for h/l=O.2, H/l=O.1 and Aft= l, and on IM~I 
for h/l=0.2, H/l=0.2 and 2/l=1. 

Journal of Enoineerin9 Math., Vo!. 7 (1973) 235 247 
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both Figs. 3 and 4 the forces computed with the aid of the small-wave-length approximation are 
also represented. 

In the first case of the smaller 2 (Fig. 3) the agreement between the present solution and the 
standing wave approximation is very good for levi and IMxl. As for IM=I the difference is larger 
because of the relatively large contribution of the pressure at the edges (29f). 

The cancellation of IF~I and I M~I for/~ = 60 ~ is just a result of the projection of the crests and 
troughs of the standing waves upon the body surface. 

In the case of the larger wave length (Fig. 4) the agreement between the present and the 
standing wave solution is still fair. 

In all cases IFyl and IM~I drop quite rapidly as/~ decreases from its maximum value of 90 ~ 

6.4. The influence of the draft 

We have taken 2/l=0.5, 2/l=0.2 and fl=90 ~ and let H/h vary from H/h=l  (no bottom 
clearance) to H/h = 0.25 (Fig. 5). Again the solution is in excellent agreement with the standing- 

t o  

o a  

t l l  

1.1 

I ~ - - . A _  I 

�9 Eq. 31a 
- -  . a 

Fi 

- -  - L _ _ •  f 

ure 5. The influence of H/h on the lateral wave forces tr~l and tM~! for h/l=0.2, t/1=0.5 and ~=900. 

wave solution. The dimensionless forces increase as H/h becomes small apparently because of 
the uneven distribution of the wave energy with depth. 

It is worthwhile to mention here that at the limit H/h= O, with 2/h and 2/lkept fixed, [Frt and 
]Mx] are different from zero, although the numerical values obtained from the small-wave-length 
approximation are probably not correct. Even a body of vanishing draft causes wave scattering 
and F~ and M; are proportional to H and H 2, respectively for small H/h. 

Again, the solution for smaller H/h than considered here can be approached by slender body 
approximations. 

6.5. The influence of the water depth 

We have also checked the influence of the change of h/l upon the forces in the range h/l= 0.2 to 
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1.0 while keeping 2/I= 0,5, H/l= 0.1 and fl = 90 ~ The values of the forces have been found to 
vary as follows: [Fx] = 1.13 to 0.96 and [Mxl = 0.46 to 0.39, respectively. The forces change only 
slightly, because ,~/h= 2.5 to 0.5 corresponds to waves in almost deep water. 

7. Conclusions 

The lateral wave forces acting on a thin elliptical body have been computed by using the theory 
of wave scattering without any additional approximation concerning the draft or the wave 
length. The results are, therefore, particularly valuable in those ranges of the dimensionless 
parameters of the problem in which other known approximations (slender body, shallow water) 
are not sufficiently accurate. 

The method used in the present work is too elaborate to be of a practical value for solving any 
given particular case. Fortunately, the results show that for elongated bodies (say l/H > 10) and 
for not too large wave lengths (say 2/1< 1, 2/H < 10) the forces may be obtained quite accurately 
from the simple approximation of standing waves. 

In the case of large wave lengths other approximate methods can be used in order to obtain 
the forces in a simpler way than the present method. 

The wave forces are generally of the same order of magnitude as the hydrostatical forces and 
they should be taken into account in any realistic computation of the body motion. 

Appendix 1: Definition and computation of different coefficients and functions. 

1. The parameter a in Mathieu equations (14) takes the values a = q l ,  - q ,  (n=2,  3, ...) with 

qi = (r://22) 2 (A.1) 

and q2 q3, ... the solutions of the transcendental equation (17b), which has been solved 
numerically. 

2. The eigenvalues 6,,(q.) of Mathieu equation (14) have been partially taken from N.B.S. [8] 
tables and computed for large q. with the aid of the asymptotic formula of McLachlan [5]. 

3. The different Mathieu functions (9), (15) have been computed by using the series given in 
McLachlan [5], e.g. 

se2m+i(fl, ql) = ~ "-'2r+ ln2m+lt-~qi) ~ sin [ (2r+ 1)fl] (A.2) 
r=0 

S2m+l ~ ]:~2m+ 1 
- -  U 2 r +  1 Se2m+i( R, ql) B2m+i r=O (__)r [jr(vl)jr+l(v2)__Jr§ ] (A.3) 

where v 1 = q~ exp ( -  R); v 2 = q~ exp (R). 
The Fourier coefficients of the type nero+ i ,  ner+l tql) in (31) have been computed by using the 
recursive formula given by Blanch [3]. 

4. The coefficients b, b* in (21) have been computed according to the following equations 

b*~ = bin,,-* = ~,,, = 0 (m = 0, !, 2, . . .  ; n = 2, 3 . . . .  ) (A.4a) 

2agi 
-- ' (ql)Ne2m+l( O, ql) ,  b(2m+ 1)1 (,0~1(0) Se2m+l(O, ql) Se2m+l(fi, ql)/S2m+l (1) 

(m = 0, 1 . . . .  ) (A.4b) 

2ag (i), z[O, b(z , .+m-  o)~(~(ol Se'z,,+z(O, ql)sez,,+z(fl, qll/s2,,+2(q,)Ne2,,+ , q~), 

(m = 0, 1 . . . .  (i.4c) 

the coefficients s,,(q,) being defined in McLachlan [5]. 
5. The coefficients of the linear systems (28) have the following expressions. 
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F~(2~ + 1)0 m~ �9 -'(2t+ 1)s = plsPiq ' R2m+ 1 t ~n2m+l -2,+1 tql)n2~+, (ql)Ne(2i~+ l ( 0, q~)/ Ne(21~'+ ~ ( O, q~)+ 
0 

+ ~ PnsPnO ' l"~Z+tA2m+ l l X--2m+ l t } , - * *  ~2,+ ~ tq.)a2~+ ~ (q.)Gek2,.+ ~ (O, - q . ) /  Gek2,.+ t (O, - q . )  , 
n=2 

(A.5a) 

O (2~+',0 = ~ ztrion2~+izm+i(qa)sezm+l(fl, ql)" 
m=O 

" [Net2*2+ i (0, qt)/Ne(21~'+l(O, ql)][Se'2m+,(O, q i ) / s2 , ,§  (A.Sb) 

D(2"~+2)0 ~ ( r~  n D2m+21~ ~D2m+2 (1) = (ql)Ne2,,+2 qi)/Ne(21~ '+2(0, q l )+  a'~(2t + 2) s m=0 ~ I-lsirl@ D2t+2 ~ 'q t )D2r+2 (0, 

"q- ~ PnsPnO( -'l~*+tR2m+21 i} ~'2t+2 ~qnl~'a,+2~u2rn+2 (qn)" 
n=2 

} �9 Gek2,,,+2(O , -q.)/Gek'2m+2(O, - q , )  , (A.5c) 

2m+2 j~(2z+ 2)~b 
= ~ 2PioB2~+2 (ql)Se2m+2(fl, q l ) "  

m=0 

�9 [Ne(2~+2(O, ql)/Ne(2~)m'+2(O, q~)]'  [Se~m+2(0, q~)/s2,,+2(q~)] (A.5d) 

In (A.5a)-(A.5d) P,~ are defined as 

(o [ 2 / ( h - H ) ] % i n  k , ( h - H )  (n = 21 3, .) (A.6a) Pnl= f , (z)  Fl(z)dz = 2 * " 
. - n  [ - h - ( # / o o  )k.h]=k. 

f~ 2 ( - 1)" -~ k. sin [k n (h = H) ]  (n, s = 21 3, 5. . .)  
P"~ = �9 n f . ( z )F~( z )dz -  (h_H)~  [h_(g/oo2)sin2knh]i(k2_K2m ) 

(A.6b) 

where K m = ( m - 1 ) h i ( h - H )  and k,=4q~.fl. For n=  1 k. should be replaced by ika. 

Appendix 2: The solution of the infinite linear system (28). 

The system (28) has been truncated to a finite number of equations by taking a finite number of 
terms in the "wavemaker" equation (23a). The far terms in (23a) represent high-frequency 
components of the wavemaker motion and their influence is presumably negligible. 

To check empirically the convergence of the solution of (28), the number of terms has been 
gradually increased until the solution became practically constant. As an example we give in 

TABLE 1. 

An example of coefficient convergence 
for H/h=0.5, fl=90 ~ h/l=0.2 and 2/1= 0.5 

L, L2 Re{U**} lm{Ull} GC [Fy I 

10 2 1.093 -0.796 1.2196 1.1285 
10 3 1.082 -0.783 1.2!50 1.1304 
10 4 1.076 -0.774 1,2!11 1.1314 
10 5 1.073 -0.770 1.2092 1.1318 

4 5 1.067 -0.751 1.1801 1.1340 
6 5 1.072 -0.768 1.2071 1.1320 
8 5 1.072 -0.770 1.2092 1.1318 

10 5 1.073 -0.770 1.2092 1.1318 

El, L2 are the number of functions of 0 and z, respectively, taken in (23a). 
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Table  1 the changes of ]Fyl and Ut 1 f rom (31) and (28) as the number  of  terms in (28) is increased. 
In the same table the global coefficient of  energy scattering 

0) 2 f .  
GC - 21a2 g ~ Js [~b~[2dS (A.7) 

is represented (S is an ellipse at t ~  oo). 
The apparent ly  good  convergence of  bo th  Ifyl and  GC, which represent near and  far field 

quantities respectively, suggests that  (28) is well behaved and may  be approx imated  by a not  
too  large finite system. Generally, the number  of  terms necessary in order  to obta in  a lmost  
constancy and mono tone i ty  of  the numerical  results did not  exceed 50. 
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